Difference between revisions of Frequently Asked Questions/Myopia/Quotes

Jump to navigation Jump to search
m
no edit summary
mNo edit summary
 
(3 intermediate revisions by 2 users not shown)
Line 1: Line 1:
==Axial elongation==
==Axial elongation==
{{quote|“The homeostatic control of eye growth functions to keep images sharply focused on the retina. Therefore, if the eye length increases more slowly than does the focal length, the focal plane will be behind the retina, creating hyperopic defocus on the retina. The same occurs if one puts a negative lens over the eye  (Figure 2A). To regain sharp focus, the retina needs to be displaced backward to where the image is. This is done in two ways: the eye is lengthened by increasing the rate of growth or of remodeling of the sclera at the posterior pole of the eye Gentle and McBrien 1999 and Nickla et al. 1997, and the retina is pulled back within the eye by the thinning of the choroid, the vascular layer between the retina and sclera ( Figure 2B;  Wallman et al. 1995 and Wildsoet and Wallman 1995); once distant images are again focused on the retina (emmetropia), both the rate of ocular elongation and the choroid thickness return to normal.
{{quote|“The homeostatic control of eye growth functions to keep images sharply focused on the retina. Therefore, if the eye length increases more slowly than does the focal length, the focal plane will be behind the retina, creating hyperopic defocus on the retina. The same occurs if one puts a negative lens over the eye  (Figure 2A). To regain sharp focus, the retina needs to be displaced backward to where the image is. This is done in two ways: the eye is lengthened by increasing the rate of growth or of remodeling of the sclera at the posterior pole of the eye (Gentle and McBrien 1999 and Nickla et al. 1997), and the retina is pulled back within the eye by the thinning of the choroid, the vascular layer between the retina and sclera (Figure 2B;  Wallman et al. 1995 and Wildsoet and Wallman 1995); once distant images are again focused on the retina (emmetropia), both the rate of ocular elongation and the choroid thickness return to normal.


[[File:Ocular_Compensation_for_Lens-Induced_Defocus.jpg|thumb|Ocular Compensation for Lens-Induced Defocus]]
[[File:Ocular_Compensation_for_Lens-Induced_Defocus.jpg|thumb|Ocular Compensation for Lens-Induced Defocus]]
Line 28: Line 28:
https://www.sciencedirect.com/science/article/pii/S0896627304004933#BIB235
https://www.sciencedirect.com/science/article/pii/S0896627304004933#BIB235
{{clear}}
{{clear}}
 
==Hereditary factors of myopia==
{{quote|“In populations with little genetic heterogeneity, such as Inuit populations, studies have revealed that within a generation, the incidence of myopia has risen dramatically in line with the onset of formal education and literacy.3 4 In addition to this evidence for an environmental contribution to the aetiology of myopia, there is also abundant evidence for a genetic influence. These contrasting lines of evidence have stimulated the long running “nature versus nurture” debate, although it is now clear that myopia results from the interaction of environmental and genetic factors.5However, the observed increases in myopia over a generation indicate that the modern myopic epidemic is being fuelled by environmental changes. Furthermore, environmental influences are more easily altered than our genetic make up. Understanding how the visual environment can influence eye growth should therefore be central to any attempts to alter the natural history of myopia.”}}
http://bjo.bmj.com/content/82/3/210.full%C2%A0
==Infant myopia==
==Infant myopia==
{{quote|“1. The manifest refractions of 72 children were tracked at regular intervals starting soon after birth and continuing for 9-16 y. Near-retinoscopy, a non-cycloplegic refraction technique, was used for children aged 0-3 y, and non-cycloplegic distance retinoscopy after 3 y. Almost 1400 refractions have been obtained from this group. 2. During the first 6 months the mean spherical equivalent of the group is negative by a small amount. By one year of age the children have an average of 0.5 D of hyperopia which they maintain until 8 y. After 11 y the mean spherical equivalent once again becomes negative, largely because some of the children are becoming myopic. 3. The dispersion of refractions is largest shortly after birth and smallest at 6 y, reflecting the process of emmetropization during the preschool years. 4. The spherical equivalent at 1 y is most predictive of later spherical equivalents. Correlations of spherical equivalent at 1 y with other ages range from 0.43 during the period of emmetropization to 0.76 at some later ages. 5. Children with a negative spherical equivalent in infancy in conjunction with either against-the-rule astigmatism or no astigmatism are more likely to be myopic at school age than children with infantile with-the-rule astigmatism. 6. There is an increased incidence of myopia in children with two (compared to zero or one) myopic parents.”}}
{{quote|“1. The manifest refractions of 72 children were tracked at regular intervals starting soon after birth and continuing for 9-16 y. Near-retinoscopy, a non-cycloplegic refraction technique, was used for children aged 0-3 y, and non-cycloplegic distance retinoscopy after 3 y. Almost 1400 refractions have been obtained from this group. 2. During the first 6 months the mean spherical equivalent of the group is negative by a small amount. By one year of age the children have an average of 0.5 D of hyperopia which they maintain until 8 y. After 11 y the mean spherical equivalent once again becomes negative, largely because some of the children are becoming myopic. 3. The dispersion of refractions is largest shortly after birth and smallest at 6 y, reflecting the process of emmetropization during the preschool years. 4. The spherical equivalent at 1 y is most predictive of later spherical equivalents. Correlations of spherical equivalent at 1 y with other ages range from 0.43 during the period of emmetropization to 0.76 at some later ages. 5. Children with a negative spherical equivalent in infancy in conjunction with either against-the-rule astigmatism or no astigmatism are more likely to be myopic at school age than children with infantile with-the-rule astigmatism. 6. There is an increased incidence of myopia in children with two (compared to zero or one) myopic parents.”}}
Line 37: Line 39:


https://www.sciencedirect.com/science/article/pii/S0896627304004933
https://www.sciencedirect.com/science/article/pii/S0896627304004933
==Catchy Quotes from [[EndMyopia Discord Server|Discord Chat]]==
* On [[reduction]]: "Oh and 4 weeks is a short time. Even if it was crisp for both eyes you should wait at least 8 weeks. Maybe even 12. When in doubt take the patient route"
* Eating habits impact vision: "for vision improvement , distance vision is the soup and diet is the spice"
* "Not being trapped in four walls 24/7 is the key"

Navigation menu